Monoazo Dyes for Polyamide Derived from 4-Alkylamido-2-hydroxybenzoic Acids

Ermanno Barni, Piero Savarino, Gaetano di Modica and Rosarina Carpignano

Istituto di Chimica Organica Industriale, Università di Torino, C so Massimo D'Azeglio 48, 10125 Torino, Italy

and

Sisto Sergio Papa

Centro Ricerche Chimica Organica, ACNA S p A, 20031 Cesano Maderno, Italy

and

Giacomo Giraudo

Istituto Industriale di Stato per Tessili e Chimici Tintori V Guarrella, Via Paganini 22, 10154 Torino, Italy

(Received 15 July, 1982)

SUMMARY

Data on a series of 65 azo dyes derived from 4-alkylamido-2hydroxybenzoic acids are reported. The dyes are suitable for application to polyamide fibres

Many correlations between the nature of substituents and the physical, spectroscopic or tinctorial properties of dyes were established. Correlations between structure and colour of dyed fabrics were also found

1. INTRODUCTION

The field of dyes containing hydrophobic alkyl chains of modular length has been investigated for many technical purposes. In their classic work, Fierz-David and Kuster¹ studied the change of surface tension due to the change in chain length in azo dyes potentially usable as acid or direct dyes. Acid wool dyes of the 'Carbolan' series have been marketed by ICI,² besides the lightfastness inherent to the anthraquinone moiety, these show high fastness to repeated washings due to the presence of a C₁₂ unit. The molecular areas and orientation at water surfaces of aromatic azo compounds containing long alkyl chains have been studied by Giles and Neustadter.³ Many patents claim the use of weighted non-diffusing azo dyes in silver halide emulsions.⁴ Several long alkyl chain azo dyes have been proposed for the dyeing of polypropylene fabrics.^{5,6} Disazo dyes of this type also have been used to colour gasoline, fuel and diesel oils.⁷ The effects of long chains on standard affinity, lightfastness, wetfastness and diffusion rate have been studied by several authors.⁸⁻¹⁰

In this paper a series of disperse monoazo dyes for polyamide fibres is described. Suitable aromatic amines were diazotized and coupled with acyl derivatives of 4-amino-2-hydroxybenzoic acid (I) containing alkyl chains in the range C_1 – C_{15} . The effects of substituents and chains on chemical, physical and technical properties of the dyes (III) were investigated

2 EXPERIMENTAL

2.1. Dyes and intermediates

4-Alkylamido-2-hydroxybenzoic acids (II) were prepared as indicated in refs 11 and 12 and purified by repeated crystallization from ethanol.

The diazotization of the amines was performed following the usual procedures. Coupling was carried out in alkaline conditions, in water for $R = CH_3$, C_3H_7 , in 25% aqueous ethanol for $R = C_7H_{15}$, $C_{11}H_{23}$ and in 50% aqueous ethanol (containing 10% pyridine) for $R = C_{15}H_{31}$. After coupling, the mixture was kept overnight and acidified with acetic acid. The dye was then collected and crystallized as indicated in Table 1. All the dyes gave correct elemental analyses.

2.2. Chromatography

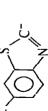
 $R_{\rm f}$ values were determined on silica gel 60 F-254 TLC plates, using as eluent B.A W (*n*-butanol:acetic acid:water) 4:1:5

TABLE 1 Characterization Data for Dyes III

H007	EO T	HCOR
	N=N-	Ž

Дуе		Sır	Structure		Crystallization"	M.p	Amax (mm)	a Bol	R,
011	2	4	5	R	20166711	3	(max)		
1	1		1	CH,	В	244-5			0 83
7	I	1	l	n-C,H,	В	227-8			0 84
E	ı	l	1	n-C,H15	¥	195-7	368	4.28	0 85
4	1	1	1	n-C,(H23	A	178-9			98 0
w	l	1	1	n-C ₁₃ H ₃₁	V	171-2			0.87
9	I	CH,	i	CH,	æ	248-9			0.82
7	ł	CH ³	l	n-C ₃ H,	В	237-8			0 83
∞	ļ	CH,	Ì	n-C,H1,	В	2079	371	4 34	0 84
6	1	CH,	1	$n-C_{11}H_{23}$	В	191-3			0 85
01	ļ	CH,	1	n-C ₁₅ H ₃₁	В	178-9			98 0
=	}	COČH,	Ì	CH.	В	261-2			0.74
17	١	COCH	١	n-C ₃ H,	В	231-2			0 77
13	Ì	COCH,	١	n-C,H,,	8	185-7	387	4 34	0 79
14	ì	COCHi	1	$n-C_{11}H_{23}$	В	155-7			0.81
15	i	COCHi	1	$n-C_{15}H_{31}$	В	129-30			0 82
91	١	NO ₂	١	CH ₃	В	283-4			0.75
11	1	NO ₂	1	n-C ₃ H,	В	268-9			9/ 0
18	١	NO ₂	١	n-C,H15	Ą	237-8	396	4 30	110

TABLE 1—conid.


Dye		Structure	fure		Ciystallization	M p	, max	log ch	R
00	2	4	S	R	- 5011 ent	() -	(1111)		
61	1	NO ₂		n-C ₁₁ H ₂₁	٧	209-11			0.79
70	l	NO.	1	n-C ₁ ,H ₃₁	Ą	1-561			080
71	I	och,	l	CH,	8	229-30			0 77
77	I	OCH ₃	ļ	n-C ₃ H,	2	219-21			0 78
23	1	OCH ₃	ĺ	n-C,H ₁₅	A	200-2	382	4 39	080
z	ì	OCH ₃	I	$n \cdot C_{11} H_{23}$	A	166-7			0 8 1
32	1	OCH ₃	1	n-C ₁₅ H _{3,1}	Ą	161-2			0 84
92	!	ū	I	CH	В	250-1			0 82
11	1	Ü	ļ	n-C ₃ H,	В	239-41			0 83
28	}	Ü	1	n-C,H ₁₅	A	221-2	376	4.33	0 85
53	!	Ü	I	$n-C_{11}H_{23}$	A	202-3			980
30	ì	ū	1	n-C ₁₅ H ₃₁	А	16-681			0 87
31	1	CN	1	CH ₃	ш	260-2			920
32	ļ	CN	ļ	n-C ₃ H,	٧	251–3			080
33	1	CN	1	n-C,H ₁ ,	A	244-6	404	4 32	0 82
34	1	CN	1	$n-C_{11}H_{23}$	А	241-3			0 84
83	1	CN	I	n-C1,H31	¥	237-9			98 0
36	J	NHCOCH ₃	I	CH,	A	261-3			0 75
31	1	NHCOCH	ļ	n-C ₃ H,	A	246-8			92 0
8 8	i	NHCOCH	1	$n-C_7H_{15}$	A	220-2	390	4 4 5	0 79
R	ı	NHCOCH,	ł	$n-C_{11}H_{23}$	Ą	193-5			0.80
9	1	NHCOCH ₃	1	$n-C_{15}H_{31}$	m	191-3			0 82
4	-	BZT	ļ	CH,	ပ	288-90			0.77
45	ł	BZT	!	n-C ₃ H,	O	280-2			0 78

080	0.81	0.83	0 77	0 79	0 82	0.85	0.87	0 77	0.79	0.81	0.83	0.85	0 77	080	0.82	0.83	0.85	190	0.71	0 74	0.75	0 77
4 51					4 30					4 32					4 36					4.30		
409					422					416					433					405		
256-8	6-/57	227–9	285-7	269-71	236-8	222-4	220-2	27980	276-7	235-7	228-9	206-8	282–3	275-7	238-9	226-7	206-8	287-9	265-7	251-3	213-5	208-10
Ü	ر	ပ	A	A, D	A, D	A, D	A	A	A	A	Α	∀	ĬΤ	A	A	A	Ą	Ö	Ö	ŋ	A	V
n-C,H15	$^{n-C_{11}H_{23}}$	$^{n-C_15H_{31}}$	CH_3	$n-C_3H$	n-C,H13	$n-C_{11}H_{23}$	n-C ₁₅ H ₃₁	CH,	n-C ₃ H,	$n-C_7H_{15}$	n-C ₁₁ H ₂₃	n-C ₁₅ H ₃₁	CH ₃	n-C ₃ H,	n-C,H ₁₅	$n-C_{11}H_{23}$	n - $C_{15}H_{11}$	CH,	n-C ₁ H ₇	$n-C_7H_{15}$	$n-C_{11}H_{23}$	n-C ₁₅ H ₃₁
1	1	İ	1	1	1	ļ		1	ł	i	1	1	1	l	i	ļ	ì	N02	N02	N02	N02	N0 ₂
BZT	179	BZT	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	NO2	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	NO ₂	ı	1	1	1	•
l			Ü	ij	ぃ	ご	ວ	CH_3	CH,	CH,	CH ³	CH,	OCH,	OCH ₃	OCH,	OCH ₃	OCH_3	OCH_3	OCH,	OCH3	OCH ₃	осн3
£ 5	4	45	4	47	%	6	2 0	51	25	3 3	%	22	26	21	28	29	9	19	62	S	5	65

" A = ethanol, B = ethanol/water, C = dioxane, D = dioxane/water, E = acetic acid, F = pyridine, G = dimethylformamide/acetone, A, D = first crystallization from ethanol followed by a second from dioxane/water

b One value for a given substitution in the A ring, being the same independent of the chain length.

° BZT, 6-methyl-2-benzothiazolyl H₃C

2.3. Spectra

The electronic spectra of the dyes were determined on a Pye Unicam SP 8-100 spectrophotometer in ethanol (data in Table 1) and in ethanolic 0.1 M-potassium hydroxide (data in Fig. 5).

Nuclear magnetic resonance spectra were obtained with a Varian T-60 spectrometer in DMSO-d₆ solution (6%) using TMS as internal standard.

2.4. Dyeings and fastness determinations

The baths were prepared by dissolving the dyes into a small amount of acetone, adding Disperlene T 333 (A.I.C S.p A. Turin) as dispersing agent and gently removing the solvent Distilled water was added to the final required volume.

Dyeings on polyamide 66 were carried out on an Ahiba Texomat apparatus to 2% depth and at liquor ratio 40:1. The pattern, previously wetted, was put into the dye dispersion (60°C) and the temperature raised to boiling in 30 min and maintained for 45 min. The dyed fibre was then removed, well rinsed with a soap solution and dried in hot air

The fastness was assessed by standard procedures. ¹³ Lightfastness was determined on a Xenotest 150. The fastness to sublimation was evaluated after treatment for 30s at 150°C.

2.5. Colour measurements

The colour of dyed fabrics was determined on an IBM 7841 mod. 2 colour analyser using the D source and barium sulphate as standard white

3 RESULTS AND DISCUSSION

3.1. Chemistry, structure and physical properties of the dyes

The starting material for the synthesis of dyes was p-aminosalicylic acid (I), an intermediate easily available at low cost and well known for pharmaceutical purposes. It can be employed not only as a coupling component at the starred position, but also as a diazo component in the

synthesis of azo dyes.¹⁴ By reaction with acyl halides (Schotten-Baumann) the amino group may be acylated (R in the range C_1 – C_{15}) and the resulting coupling agents (II), reacting with the diazonium salts of suitable aromatic amines, give monoazo dyes of general structure III. The micellar properties of some compounds II have recently been investigated.¹⁵

In Table 1 the formulae of dyes III and their physical and spectroscopic data are reported.

In Figs 1 and 2 the outlined NMR pattern of dyes 26 and 10 are shown, as an example. The related attributions confirm the structure of the dyes.

The melting points of individual dyes are plotted against chain length in Fig. 3. In general these molecules have quite high melting points and this could be a significant property in connection with technical finishing. There can be seen a general trend whereby melting points decrease as the

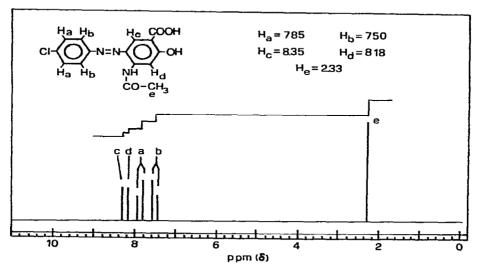


Fig. 1. NMR spectrum of dve no 26

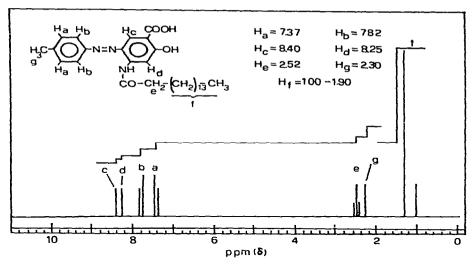


Fig. 2. NMR spectrum of dye no 10

chain length increases This is not unexpected, taking into consideration the negative effect of weighted hydrophobic structures on accommodation into a crystalline lattice.

An opposite effect is shown if $R_{\rm f}$ data are considered (Fig. 4). In this case the chain lengthening causes a loss of interaction with the polar substrate. The apparently low $R_{\rm f}$ values for the 2-OCH₃,5-NO₂ series can be explained in terms of polarity at the A ring moiety. The donor (OCH₃) and acceptor (NO₂) groups are in the para position, while in the other nitro bisubstituted series the meta position is occupied

3.2. Electronic absorption spectra

In the case of the monosubstituted dyes falling within the general structure of donor-acceptor substituted azobenzenes (IV), the λ_{max} of the

$$X \longrightarrow N = N \longrightarrow OH \xrightarrow{OH}$$

$$IV$$

$$X \longrightarrow N = N \longrightarrow O^{-} \longleftrightarrow X \longrightarrow N \longrightarrow O$$

$$VI$$

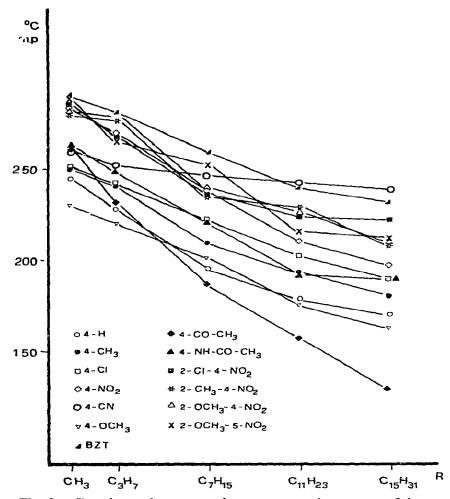


Fig. 3. Correlation between melting points and structure of dyes

long wavelength bands have been plotted against Hammett's σ_p constants (Fig. 5) and a good relationship observed. The λ_{max} values were taken in alkaline solution, in which the conjugated system could be regarded as a resonance hybrid of the two extreme canonical forms V and VI, in order to enhance the slope of the regression. No effect of the chain on the wavelength of absorption was observed. The σ_p value here assigned to the hetaryl substituent, 6-methyl-2-benzothiazolyl, is +0.64 as previously obtained for 2-benzothiazolyl. The bathochromic shifts associated with

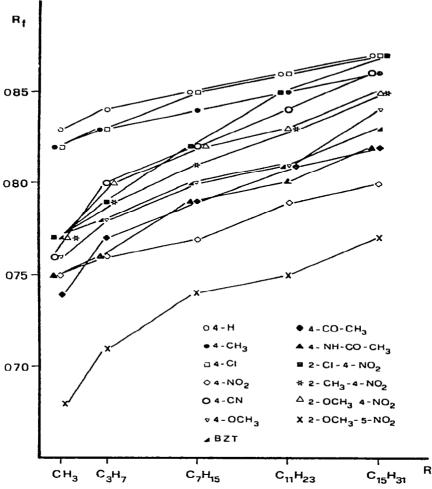


Fig. 4. Correlation between R_f and structure of dyes

the electron withdrawing power of substituents (also observed in neutral media) indicate that these dyes, as with the majority of arylazophenols, exist solely in the azo and not in the hydrazone form.¹⁷

3.3. Dyeing properties

All the dyes were particularly suitable for use as disperse dyes in the dyeing of polyamide 6 6 fabrics. Attempts at application to polyester were

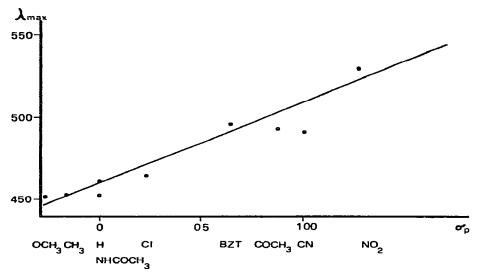


Fig. 5. Correlation between λ_{max} of dyes and Hammett's σ_p constants The equation for the regression is

$$\lambda_{\text{max}} = 49 \ 33\sigma_{\text{p}} + 460 \ 75$$

and r = 0.977. The CN series is excluded from the regression, if included, r = 0.959

unsatisfactory, mainly due to the long chain substituents. Exhaustion of dye liquors, levelling and colour yield (compared with commercial dyes in similar conditions) were good. A slight tendency to exhibit phototropic changes was however observed for most dyes in the series.

Fastness data of the dyeings are reported in Table 2. The following comments can be made:

- (a) Fastness to solvents and to sublimation are very good or excellent in the whole series (data not reported in Table 2). Fastness to rubbing is very good for monosubstituted classes (except for the hetaryl substituent, BZT) but generally lower for the bisubstituted ones.
- (b) While the behaviour of individual dyes in the specific tests has to be evaluated, it was nevertheless interesting to work out some generalizations in view of the large amount of available data. Plotting the total wetfastness (Table 2) versus substitution, the curve in Fig. 6 is obtained. The worst effect is due to 2-Cl,4-NO₂ substitution, whereas the best is due to 2-OCH₃,5-NO₂. No correlation between lightfastness (total light, Table 2) and wetfastness is found. The graphs are helpful if a compromise

TABLE 2
Fastness Properties of Dyes III

Dye"			Wetfasmers	stness			1	Total		Rubbing	Lightfastness	Total"
2		Washing at 60°C, W ^b	, W ^b	1	Per spiration, P ^b	p _b	W+P	welfastness + $P = \Sigma(W+P)$	Dry	Wet		nghtfastness
	Colour Polye	Polyamide staming	Wool	Colour	Polyamide	Wool						
_	, ~	3.4	3.4	4.6	2	0 ~	18.5		~	~	7-3	
. ~	2-3	3-4	3-4	3 4	. 7	. m	17.5		'n	, v	2-3	
~	3	3-4	4	3-4	m	3-4	20 5	110	S	S	2-3	12.5
-3	4	5	4-5	3-4	3-4	4 5	25 0		5	S	2-3	•
S	4	5	5	4-5	5	٧	28 5		~	S	2-3	
9	4	4-5	4	4	3-4	4	24 0		S	5	2–3	
_	4	3-4	6	3-4	C 3	2-3	18 5		S	S	2-3	
∞	4-5	4-5	4	3-4	33	3-4	23 0	120 5	2	S	2-3	12.5
6	4-5	S	5	4	4	4	26 5		2	5	2-3	
0	4-5	4-5	5	4-5	2	S	28 5		5	2	2-3	
_	4-5	S	2	4	2-3	3-4	24 5		5	4-5	3-4	
7	4	4	4	4	2-3	3	21 5		5	4-5	4	
~	4-5	4-5	4-5	4-5	3-4	4	25 5	128 5	S	4-5	3-4	18 0
4	4-5	S	4-5	4-5	4	4-5	27 0		5	4-5	3-4	
'n	~	S	5	S	S	2	30 0		5	5	3-4	
9	3-4	3	٣	4	1-2	2-3	17.5		S	2	4-5	
7	3-4	3	3	4	2-3	٣	19 0		5	5	4-5	
∞	4	1-2	2-3	4	m	3-4	19 0	108	S	Ś	4-5	20 5
6	4-5	3-4	4	4-5	3-4	4	24 0		S	S	3-4	
0	4	S	ۍ	45	S	5	28 5		5	5	3-4	
_	v	V .	V	7		,	3 00		Ų	2 7	,	

12.5	12.5	21 5	0.8	080	21 5
7 5 7 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2-3 2-3 5-5 5-5	4-5 3-4 1-2 1-2		r r f f f	23423
\$ ~ ~ ~ ~ ~ ~ ~	· ~ ~ ~ ~ ~ ~ ~	5-5 5 4 4 4 5-5 5-4	5 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2	24 4 E
~ ~ ~ ~ ~ ~ ~ ~ ~	. v. v. v. v.	4 ~ ~ ~ ~	5556	3-7-4-5 3-4-5-4-5-4-5-4-5-4-5-4-5-4-5-4-5-4-5-4-	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
121	124	119 5	28 2	123 0	100 5
22 0 24 0 26 0 28 5 20 0 21 5	24 5 28 5 29 5 20 0 22 5	22 5 25 5 29 0 24 5 21 5	20 0 24 0 20 0 20 0	27 5 27 5 28 5 13 5 15 0	22 5 13 5 26 0 22 0 19·5
3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	4 v v 7 m	3-4 5 5 4 4 5 4	c 4 c c c 4 c c c c c c c c c c c c c c	ν	4-5 3-4 2-3 5-3
2-3 3-4 3-4 5 5	3 4-5 5 1-2 3	3 2-3 5 3	2-3	5 s s 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3-4 4-5 3 3-2-3
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3-4 4 4 3 3	2-3 3-4 2-3	3-4 1-2 1-2	2-3 2-3 3
4 5 4 5 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$\frac{4}{2}\$	\$ 5 5 4 5 5 5 4 5 5 4 5 5 4 5 5 5 5 5 5	2 5 5 5 4 4 c	2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2-4 2-4 4-5
4 4 4 5 5 5 4 4	54 c c 24 4 54	4.5 5 4 4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5	5 - 4 - 5 - 2 - 3 - 4 - 5 - 3 - 4 - 5 - 3 - 4 - 5 - 3 - 4 - 5 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	5 2 -3 2-3 2-3	3-4 4-5 4 3-4
4 4 1 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 6 6 6 6	2, 4 o o o o o o o o o o o o o o o o o o	5 5 5 7 4 £ 8 3 4 5 4 £	3-4 4-5 4 4
222222	333858	3 8 8 8 6	88444	3 4 4 4 4	\$ \$ \$ \$ £ £

TABLE 2—contd

Total	เหราเรตา		23.0					21 5					120			
Lightfasmess			4-5	4-5	5	3-4	S	4-5	4-5	4	1-2	33	2	ĸ	2-3	
Rubbing	Wet		S	2- 5	4-5	4-5	3	3-4	4-5	4-5	4-5	4-5	S	S	-4	
	Dry		4.5	4-5	5	S	3	33	2-3	4-5	5	4-5	S	4-5	~	
tal ^c	$W+P = \Sigma(W+P)$		119 5					1120					1370			
To	W+P		23.5	270	275	240	17.5	21.5	21 5	275	26 5	250	275	29 5	28 5	
	ph	Waol stanning	4	S	2	4-5	7	4	3-4	\$	Ś	5	5	S	2	
	Perspiration, P ^b	Polyamude stammg	3	4	5	c	7	٣.	3	5	34	3 4	4	5	5	
tness	d	Colour	4	3-4	c	3-4	2-3	6	2-3	~	4	3-4	4	4-5	3-4	
Wetfastness	, W ^b	Wool Coloun stammg change	4	S	5	4	3-4	3-4	4-5	4-5	4-5	4-5	2	S	5	
	Washing at 60°C, W ^b	Polyamude stammg	4	5	5	7	3-4	3.4	4	∵	4-5	4	4-5	2	5	
,	Wasi	Colour change	4-5	45	4-5	4-5	4	45	4	ς,	S	4 -5	S	S	5	
Dye^a	<u> </u>	,	B	¥	55	26	51	28	29	9	19	62	63	Ī	99	

the third column to the staining of wool

· Values in the first column are the sums of all wetfastness values (washing at 60°C + perspiration), the total sum of these values for a given substitution in the A ring appears in the second column

 $^{\rm d}$ Sum of lightfastness values for a given substitution in the A ring

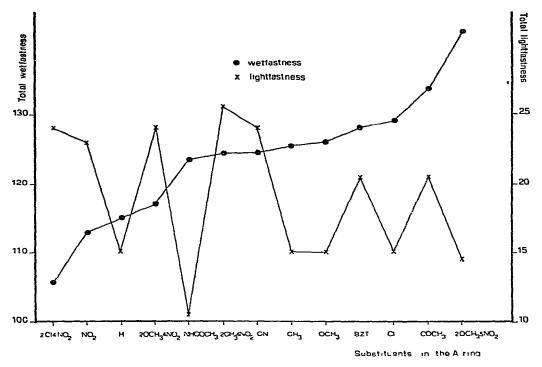


Fig. 6. Wetfastness and lightfastness properties of dyeings according to the substitution

is sought. The 2-OCH₃,4-NO₂ and 4-CN series, besides having the highest lightfastness, display a satisfactory fastness to wet treatments and the 4-BZT and 4-COCH₃ series associate high wetfastness with an appreciable fastness to light. Substitution, however, plays an important role and this becomes evident considering the very poor results for the unsubstituted series.

(c) In order to weigh the effect of chain extension on wetfastness (lightfastness is not particularly affected), in Fig. 7 total wetfastness values (Table 2) are plotted against the number of carbon atoms in the chain. The general trend is consistent with an increase of fastness with chain lengthening. A tendency towards a 'levelling out' effect towards longer chain lengths is evidenced by the shape of the area included within the dotted lines (the spread of values changes from 13 ($R = CH_3$) to 4 ($R = C_{15}H_{31}$)). In some cases the transition $C_1 \rightarrow C_3$ is accompanied by a falling-off of fastness.

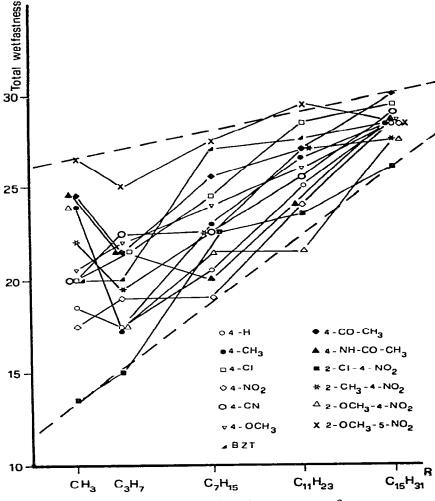


Fig. 7. Effect of chain lengthening on wetfastness

3.4. Colour assessment

The colour of dyed fabrics was assessed by tristimulus colorimetry. The observed colour on the fibre, as well as the chromaticity values, are reported in Table 3. Some general remarks can be made:

(a) For a given substitution, the highest luminance is shown by dyes with $R = C_{15}H_{31}$ whereas the percentage purity with these dyes

TABLE 3
Colour of Dyed Fibres

Dye	Colom	Chromaticity coordinates	coordinates	Lummance Jactors	e Jactors		Helmholtz coordinates	coordinates	
2	מוו אומו ב	۲	y	Y (%)	\bar{Y} (%) b	Dominant wavelengths	welengths T b		Purity B. 10.70
	į					γ _D (mm)	ďγ	r (/₀)	F (7 ₀)
_	Y	0 47	0 47	55 20		579		773	
7	>	0 48	0 47	55 30		280		87.5	
c	≻	0.47	0 47	58 78	59 07	579	579	773	80.5
4	≻	0 46	0 47	63 74		578		814	
S	⅓	0.45	0 47	65 33		577		16/	
9	>-	0 46	0 47	56 15		578		814	
7	>	0 48	0 48	57.28		579		9 06	
∞	≻	0 47	0 48	59 47	60 49	578	578	9.78	84 6
6	>-	0 46	0 48	63 20		577		84.5	
10	>	0 45	0 47	96 99		577		16/	
=	λ0	0 52	0 44	29 93		586		90 2	
12	γ0	0 52	0 44	35 00		586		90.2	
13	γ0	0 52	0.45	40 10	40 39	585	585	924	89 5
14	γ0	0 52	0.45	44 55		585		92 4	
15	γ.0	0 49	0.45	52 35		583		82 2	
91	R 0	0 58	0 38	18 22		596		913	
17	R 0	0 58	0 38	17 54		969		91.3	
18	RO	0 58	0 38	20 23	20 64	969	595	913	9 06
61	R.0	0 58	0 38	19 62		969		913	
70	R 0	0.55	0 40	27 61		593		88 0	
21	×	0 47	0 47	51 39		579		773	
77	>	0 47	0 48	54 27		578		9 1 8	
23	ہر	0 47	0 48	60 45	59 45	578	277	876	83 2

TABLE 3-contd

Dyea	Colour	Chromaticity	Chromaticity coordinates	Lumman	Lummance factors		Helmholtz coordinates	coordinates	
011	on Juore	-	4	Y (%)	$\bar{Y}(\sqrt[n]{a})^b$	Dominant wavelengths	avelengths	Pu	Purity
				3		γ^{D} (nm)	Job	P (%)	\vec{P} $(\%)^b$
72	Y	0.46	0.48	63 41		577		84.5	
25	>-	0 44	0 48	67 75		575		79.2	
76	Υ	0 49	0 47	48 16		580		200	
27	>	0 48	0 47	53 96		580		875	
28	>	0 49	0 47	56 57	55 82	280	280	200	84 7
67	⊁	0 47	0 47	60 21		579		77.3	
30	Υ	0 47	0 47	61 09		579		773	
31	Υ 0.	0 52	0.44	41 14		585		89 1	
32	٧٥	0.50	0.45	43 32		583		863	
33	γ0	0 51	0.45	44 92	47 12	583	582	89.3	82.4
ऋ	Υ Ο.	0.51	0.45	44 98		583		89 3	
35	γ0.	0 42	0 43	61 23		578		58 0	
36	>	0 48	0 48	47 98		578		89 2	
31	>	0 49	0 47	39 19		580		89 2	
38	> -	0 49	0 47	46 09	49 81	280	578	89 2	864
39	Υ.	0 48	0 48	53-57		578		89.2	
9	GΥ	0 44	0 47	62 21		575		75:2	
41	Y 0.	0.53	0 44	37 90		586		920	
42	γ0	0.53	0 44	39 63		586		920	
6	Υ.0	0.52	0 44	45.12	45 73	585	584	89 1	813

4	Y 0.	0 49	0 43	46 96		584		77.8	
\$	۷0	0 42	0 42	59 04		579		554	
4	RO	0 59	0 36	12.97		602		85 5	
4	R.0	0 59	0 35	10 46		902		85.2	
8	R.O.	0.58	0.36	9 40	11 89	602	109	87.9	833
6	R.O.	0 58	0 36	11.81		602		82.9	
3	R.O.	0.55	0 38	14 78		969		80 0	
5	0	0 57	0 39	20 93		595		0 68	
22	0	0 57	0 39	20 11		595		0 68	
SS.	R O	0.59	0 37	16 39	20 71	009	595	6 88	88.4
5 5	0	0 57	0 39	20 37		595		0.68	
55	0	0.55	0 40	25·76		265		86 1	
99	R 0	0 58	0 38	20.18		262		6 88	
21	R O	0 58	0 37	15 56		009		86.2	
28	R.O.	0 59	98 0	13 58	17 44	602	299	86.1	0 98
2 6	R 0.	0 59	0 36	14 91		602		86 1	
8	0	0 55	0 39	22 95		594		82.9	
19	>	0.47	0 48	16 65		578		8 98	
62	>	0 48	0 48	59 82		578		89.2	
63	>	0 48	0 47	56 47	59 21	579	278	86.4	81.0
2	⅄	0 47	0 47	56 39		578		83 5	
65	G.Y.	0 41	0 44	63 46		575		28 9	

 $^{\prime\prime}$ Structures given in Table I $^{\prime\prime}$ Mean values for a given substitution in the A ring Abbreviations: Y, yellow; Y O , yellow-orange, R O , red-orange, G Y , green-yellow

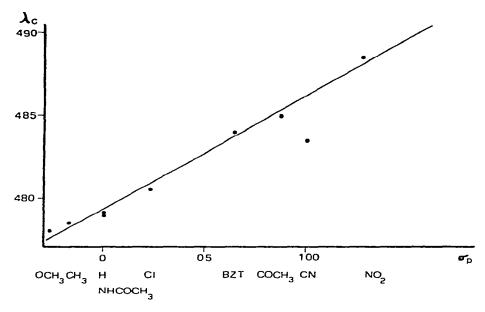


Fig. 8. Correlation between $\nu_{\rm C}$ of dyed fabrics and Hammett's $\sigma_{\rm p}$ constants. The equation for the regression is

$$i_{\rm C} = 6.92\sigma_{\rm p} + 479.34$$

and r = 0.994 The CN series is excluded from the regression, if included, r = 0.967

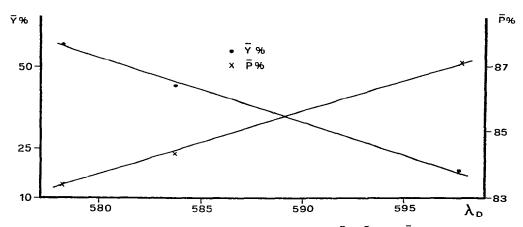


Fig. 9. General correlation between $\bar{\lambda}_{\mathrm{D}}$, \bar{Y} and \bar{P}

has the lowest or low values. This behaviour could be due to the dyeing method which employs a fixed depth of shade (2% based on the weight of fibre) with no allowance for the effect of molecular weight on the consequent molar concentration. Aggregation in the absorbed state provides another possible explanation of lower percentage purity with dyes carrying $C_{15}H_{31}$ side chains.

- (b) Figure 8 shows the linear correlation between λ_c values and Hammett's σ_p constants of substituents. This correlation is not unexpected if two facts are taken into consideration: the previously reported plot of the absorption maxima of dyes in solution against Hammett constants and the general connection between λ_c values and the absorbed portion of the incident radiation.
- (c) Collecting the dyes into three groups according to the hue of the dyeings (yellow $\bar{\lambda}_D$ 578, yellow-orange $\bar{\lambda}_D$ 584, red-orange $\bar{\lambda}_D$ 598) a general correlation between $\bar{\lambda}_D$, \bar{Y} and \bar{P} is found. The results in a typical group are shown in Fig. 9 which shows that, as shade becomes deeper the higher is the purity percentage and the lower the luminance

4. CONCLUSIONS

The versatility of 4-amino-2-hydroxybenzoic acid (PAS) has been exploited in the synthesis of variously substituted monoazo disperse dyes. The substitution has involved traditional (and hetaryl) substituents and hydrophobic chains of modular length. The dyes gave good dyeings on polyamide 6.6 fabrics and their fastness is sufficient, in many cases, for practical applications.

Owing to the large amount of available data, many interesting correlations have been found. These correlations involved on one hand the nature and the position of substituents and the length of hydrophobic chains and, on the other, physical (melting points and $R_{\rm f}$ values), spectroscopic (electronic absorption maxima), technical (fastness data) and colour (dominant wavelength, complementary dominant wavelength, luminance and purity) properties

ACKNOWLEDGEMENT

This work was supported by the National Research Council (CNR).

REFERENCES

- 1 H. E. Fierz-David and K. Kuster, Helv. Chim. Acta, 22, 82 (1939).
- 2 W. Smith and W G. Reid, Chem. Ind., 675 (1948).
- 3. C H. Giles and E. L. Neustadter, J. Chem. Soc., 918 (1952)
- 4 J A. Sprung, US Patent 2 629 658 (1953).
- 5 K Komatsu, N. Kuroki and K. Konishi, Bull. Univ Osaka Prefect, Ser. A, 12, 77 (1963).
- 6 K. Ito, A. Komori and M. Ogawa, Technol. Rept. Kansai Univ., 31 (1963)
- 7. R B Orelup, Ger Offen. 2355385 (1974)
- 8. K Grieder, J Soc Dyers Col., 92, 8 (1976).
- 9 N A Evans and I W. Stapleton, in *The chemistry of synthetic dyes*, Vol 8, ed K Venkataraman, p. 229 (and references therein) New York, San Francisco, London, Academic Press (1978)
- C. H Giles, D G Duff and R S. Sinclair, *ibid.*, pp 291, 313, 314 (and references therein)
- 11 V. M Patki and M V Shirsat, J. Sci. Ind Research, 19C, 4 (1960).
- 12 Societe Belge de l'azote et des produits chimiques du Marly, S.A., Belg. Patent 505 023 (1951).
- 13 Standard methods for the determination of the colour fastness of textiles and leather Bradford, Society of Dyers and Colourists (1978)
- 14 H Kracker, US Patent 2688613 (1954).
- 15 E Pelizzetti, E Pramauro, E Barni, P Savarino, M Corti and V Degiorgio, Ber. Bunsenges Phys. Chem, 86, 529 (1982).
- 16 E Barni, P Savarino and G di Modica, Atti Accad Sci. Torino, 107, 63 (1972)
- 17 J Griffiths, Colour and constitution of organic molecules, p 190. London, Academic Press (1976)